Stars, Dust and Megabytes: Astrophotography in the Southern Hemisphere

Axel Mellinger

Department of Physics University of Potsdam, Germany

September 2006

ৰ □ ► ৩৭৫ 1/45

Outline

1 Introduction: History of Astrophotography

2 From Stars to Pixels

- Dark-Sky Sites
- Equipment
- Image Processing
- 3 Highlights of the Milky Way

4 Summary

<□ > ∽< ⁽2/45)

Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milky Way

Summary

Astro Imaging up to the 19th Century

Vincent van Gogh

The Starry Night

Starry Night on the River Rhône

Start of the "Film Era"

1826...1838 First photographic images by JOSEPH N. NIÉPCE and LOUIS DAGUERRE. Exposure times in bright sunlight: **several minutes!**

- 1841 First Daguerrotype photo of the moon (JOHN W. DRAPER)
- 1841 Calotype process: first negative/positive images (WILLIAM F. TALBOT)
- 1871 Dry gelatin process (J. MADDOX)
- 1880 First photograph of the Orion Nebula (HENRY DRAPER)

Start of the "Film Era"

1826...1838 First photographic images by JOSEPH N. NIÉPCE and LOUIS DAGUERRE. Exposure times in bright sunlight: **several minutes!**

- 1841 First Daguerrotype photo of the moon (JOHN W. DRAPER)
- 1841 *Calotype* process: first negative/positive images (WILLIAM F. TALBOT)
- 1871 Dry gelatin process (J. MADDOX)
- 1880 First photograph of the Orion Nebula (HENRY DRAPER)

Start of the "Film Era"

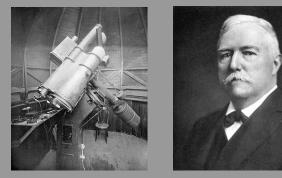
1826...1838 First photographic images by JOSEPH N. NIÉPCE and LOUIS DAGUERRE. Exposure times in bright sunlight: **several minutes!**

- 1841 First Daguerrotype photo of the moon (JOHN W. DRAPER)
- 1841 *Calotype* process: first negative/positive images (WILLIAM F. TALBOT)
- 1871 Dry gelatin process (J. MADDOX)
- 1880 First photograph of the Orion Nebula (HENRY DRAPER)

Summary

Start of the "Film Era"

1883 Photographs show more detail than the human eye perceives



Orion Nebula (AINSLEE COMMON, England)

Summary

Start of the "Film Era"

1887...1923 EDWARD E. BARNARD, Lick Observatory: *Atlas of Selected Regions of the Milky Way* First wide-angle survey

1950...1957 Palomar Observatory Sky Survey 894 plates in both red and blue light Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milky Way

Summary

Start of the "Film Era"

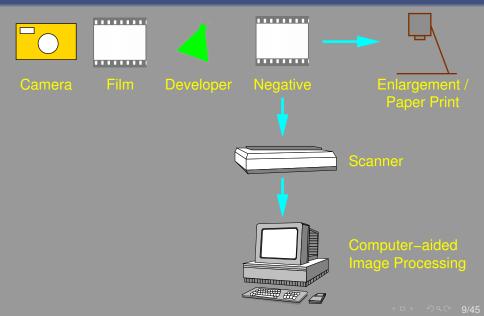
Antares/Rho Ophiuchi Region

<□ ▶ ∽へで 7/45</p>

Summary

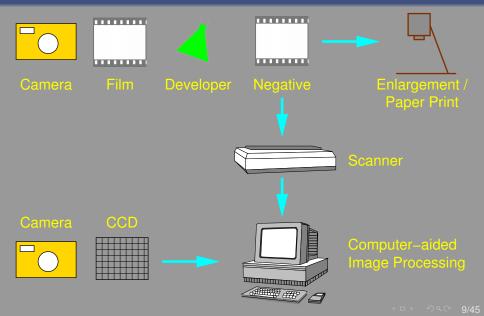
Start of the "Film Era"

1887...1923 EDWARD E. BARNARD, Lick Observatory: *Atlas of Selected Regions of the Milky Way* First wide-angle survey

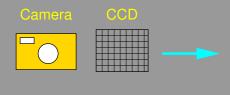


1950...1957 Palomar Observatory Sky Survey 894 plates in both red and blue light

Astro Imaging in the 20th and 21st Century: Going Digital



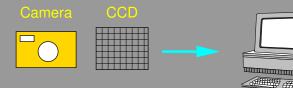
Astro Imaging in the 20th and 21st Century: Going Digital



Summary

Astro Imaging in the 20th and 21st Century: Going Digital

Astro Imaging in the 20th and 21st Century: Going Digital


Computer-aided Image Processing

ৰ⊐ ► ৩৭৫ 9/45

Astro Imaging in the 20th and 21st Century: Going Digital

Advantages of digital photography

- declining availability of film
- high quantum yield (30...80%; film: 1%)
- linear detector
- virtually unlimited processing options for digital images

Computer-aided Image Processing

Astro Imaging in the 20th and 21st Century: Going Digital

Advantages of digital photography

- declining availability of film
- high quantum yield (30...80%; film: 1%)
- linear detector
- virtually unlimited processing options for digital images

Disadvantages

- high cost
- high electrical power requirements (Peltier cooler!

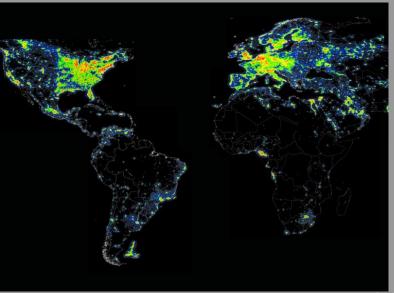
Camera

Computer-aided Image Processing

Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milky Way

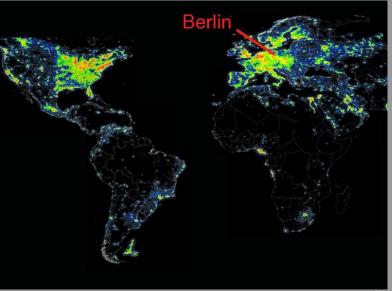
Summary


From Stars to Pixels: The Making of an Astro Photo

- Dark-Sky Sites
- Equipment: Telescope, Camera, ...
- Digital Image Processing

 From Stars to Pixels
 Highlights of the Milky Way

 •••••••••
 ••••••••


Dark Sky Locations?

 From Stars to Pixels
 Highlights of the Milky Way

 •••••••••
 ••••••••

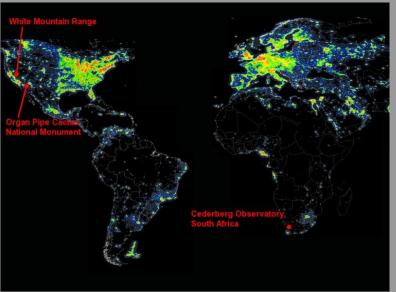
Dark Sky Locations?

Summary

Berlin area: beautiful palaces, but ...

Summary

Severe light pollution ...


Summary

Severe light pollution ... and nearly at sea level!

つへで 12/45

Dark Sky Locations

୬ ୬९९ 13/45

Eastern Sierra Nevada

Summary

Home of the Ancient Bristlecone Pines

From Stars to Pixels

White Mountain Research Station

(Elevation 12,500 ft)

Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milk

Summary

White Mountain Research Station

(Elevation 12,500 ft)

Summary

July 1997: Start of the Milky Way Panorama

The Sonora Desert: Organ Pipe Cactus National Monument

The Sonora Desert: Organ Pipe Cactus National Monument

South Africa

Introduction: History of Astrophotography

 Summary

South Africa: Table Mountain/Cape Town

Summary

South Africa: Cape of Good Hope

Looking for Tourists ...

Summary

Cederberg Mountains

Summary

Cederberg Observatory

Cederberg Star Trails

Introduction: History of Astrophotography

Summary

South African Large Telescope (SALT)

ৰ □ ► প্ৰি প্ৰ 15/45

Summary

Koornlandskloof Guest Farm

Introduction: History of Astrophotography

 Summary

Star Trails over Koornlandskloof

□ ▶ ∽ ^ ~ 16/45

Summary

Koornlandskloof Guest Farm

Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milky Way

Summary

From Stars to Pixels: The Making of an Astro Photo

- Dark-Sky Sites
- e Equipment: Telescope, Camera, ...
- Digital Image Processing

Summary

- Camera
 - Astro CCD
 - Consumer Digital
 - Film
- Camera lens (or telescope)
- Mount (for tracking)
- Guidescope (often with CCD autoguider)
- Laptop computer
 - Battery (12 V, 2...5 amps in the field

Summary

- Camera
 - Astro CCD
 - Consumer Digital
 - Film
- Camera lens (or telescope)
- Mount (for tracking)
- Guidescope (often with CCD autoguider)
- Laptop computer
- Battery
 (12 V, 2...5 amps in the field

Summary

- Camera
 - Astro CCD
 - Consumer Digital
 - Film
- Camera lens (or telescope)
- Mount (for tracking)
- Guidescope (often with CCD autoguider)
- Laptop computer
- Battery
 (12 V, 2...5 amps in the fiel

Summary

- Camera
 - Astro CCD
 - Consumer Digital
 - Film
- Camera lens (or telescope)
- Mount (for tracking)
- Guidescope (often with CCD autoguider)
- Laptop computer
 - Battery (12 V, 2...5 amps in the field

Summary

Mobile Astrophotography Equipment

- Camera
 - Astro CCD
 - Consumer Digital
 - Film
- Camera lens (or telescope)
- Mount (for tracking)
- Guidescope (often with CCD autoguider)
- Laptop computer

Battery (12 V, 2...5 amps in the fie

Summary

- Camera
 - Astro CCD
 - Consumer Digital
 - Film
- Camera lens (or telescope)
- Mount (for tracking)
- Guidescope (often with CCD autoguider)
- Laptop computer
 - Battery (12 V, 2...5 amps in the field

Summary

- Camera
 - Astro CCD
 - Consumer Digital
 - Film
- Camera lens (or telescope)
- Mount (for tracking)
- Guidescope (often with CCD autoguider)
- Laptop computer
- Battery (12 V, 2...5 amps in the field)

Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milky Way

Summary

From Stars to Pixels: The Making of an Astro Photo

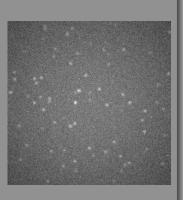
- Dark-Sky Sites
- Equipment: Telescope, Camera, ...
- Digital Image Processing

Summary

Digital Image Processing: Basic Steps

- Raw image shows
 - noise
 - "hot" pixels
 - vignetting (uneven illumination)
- Average images
- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

Summary


Digital Image Processing: Basic Steps

Removing artifacts

- Raw image shows
 - noise
 - o "hot" pixels
 - vignetting (uneven illumination)

• Average images

- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

Summary

Digital Image Processing: Basic Steps

Removing artifacts

- Raw image shows
 - noise
 - o "hot" pixels
 - vignetting (uneven illumination)

• Average images

- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

Summary

Digital Image Processing: Basic Steps

- Raw image shows
 - noise
 - "hot" pixels
 - vignetting (uneven illumination)
- Average images
- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

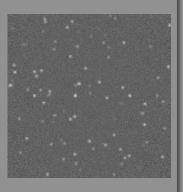
Summary

Digital Image Processing: Basic Steps

- Raw image shows
 - noise
 - "hot" pixels
 - vignetting (uneven illumination)
- Average images
- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

Summary

Digital Image Processing: Basic Steps


- Raw image shows
 - noise
 - o "hot" pixels
 - vignetting (uneven illumination)
- Average images
- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

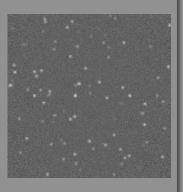
Summary

Digital Image Processing: Basic Steps

- Raw image shows
 - noise
 - o "hot" pixels
 - vignetting (uneven illumination)
- Average images
- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

Summary

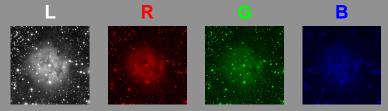
Digital Image Processing: Basic Steps


- Raw image shows
 - noise
 - o "hot" pixels
 - vignetting (uneven illumination)
- Average images
- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

Summary

Digital Image Processing: Basic Steps

- Raw image shows
 - noise
 - o "hot" pixels
 - vignetting (uneven illumination)
- Average images
- Remove dark current and hot pixels
- Remove vignetting: divide by *flat frame*

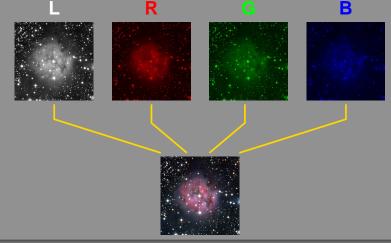


Summary

Digital Image Processing: Adding Color

Many astronomical CCD cameras have monochrome sensors!

LRGB color composites of filtered images



Summary

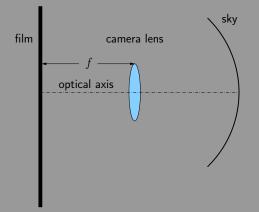
Digital Image Processing: Adding Color

Many astronomical CCD cameras have monochrome sensors!

LRGB color composites of filtered images

Summary

Mosaic Assembly

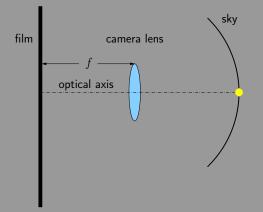

Why mosaics?

- Cover large field of view
- Create large, high-resolution images (e.g., for planetarium projection)
- Uses smaller, less expensive CCD cameras

<□ ► ∽ < C 22/45

Summary

Mosaics: geometric distortion

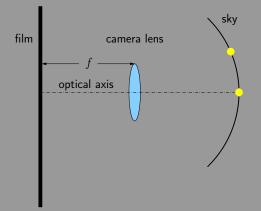


Spherical celestial sphere imaged onto planar film/CCD

- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
 - $s = f \tan \sigma$
- o can be corrected!

Summary

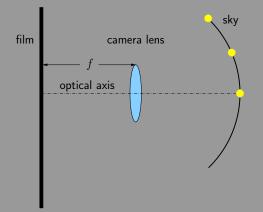
Mosaics: geometric distortion



Spherical celestial sphere imaged onto planar film/CCD

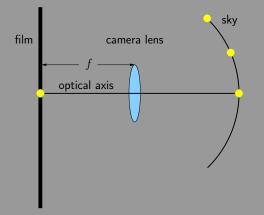
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
- can be corrected

<□ ► ∽ < C 23/45

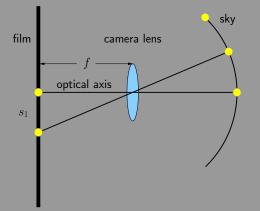

Summary

- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
 - $s = f \tan \sigma$
- o can be corrected!

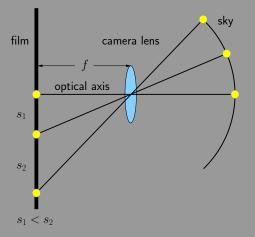
Summary


Mosaics: geometric distortion

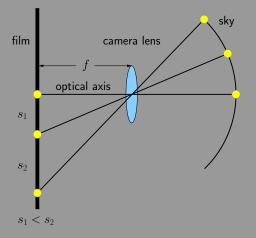
- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
- can be corrected


ৰ □ ► ৩৭৫ 23/45

Summary

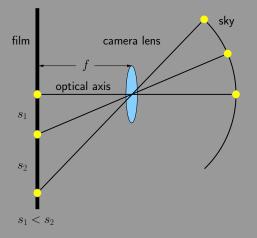

- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
 - $s = f \tan \sigma$
- o can be corrected!

Summary


- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
 - $s = f \tan \sigma$
- o can be corrected!

Summary

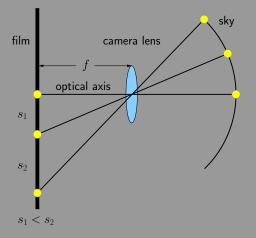
- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
 - $s = f \tan \sigma$
- o can be corrected!


Summary

- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation: $s = f \tan \sigma$
- o can be corrected!

Summary

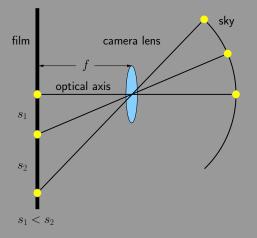
Mosaics: geometric distortion



- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:

 $s = f \tan \sigma$

o can be corrected!


Summary

- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
 - $s = f \tan \sigma$
- o can be corrected!

 Summary

Mosaics: geometric distortion

- Spherical celestial sphere imaged onto planar film/CCD
- Distortion increases with increasing angle σ between star and optical axis
- Geometric effect NOT an indication of a faulty camera lens
- Mathematical relation:
 - $s = f \tan \sigma$
- o can be corrected!

From Stars to Pixels

Mosaics: geometric distortion

Example: southern Milky Way around NGC 3114

Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milky Way

Summary

Mosaics: geometric distortion

Example: southern Milky Way around NGC 3114

Summary

Astrometry: from Sky to CCD/Film

Conversion: star coordinates $(\alpha, \delta) \rightarrow$ pixel coordinates (x, y)

 $\cos \sigma = \sin \delta \sin \delta_c + \cos \delta \cos \delta_c \cos \Delta \alpha$

- $\cos \gamma = (\sin \delta \cos \delta_c \cos \delta \sin \delta_c \cos \Delta \alpha) / \sin \sigma$
 - $s = f \tan \sigma$

$$x = x_c - s\sin(\gamma - \beta)$$

$$y = y_c - s\cos(\gamma - \beta)$$

Summary

Astrometry: from Sky to CCD/Film

Conversion: star coordinates $(\alpha, \delta) \rightarrow$ pixel coordinates (x, y)

- $\cos\gamma \ = \ (\sin\delta\cos\delta_c \cos\delta\sin\delta_c\cos\Deltalpha)/\sin\sigma$
 - $s = f \tan \sigma$

$$x = x_c - s\sin(\gamma - \beta)$$

$$y = y_c - s \cos(\gamma - \beta)$$

Summary

Astrometry: from Sky to CCD/Film

Conversion: star coordinates $(\alpha, \delta) \rightarrow$ pixel coordinates (x, y)

- $\cos \sigma = \sin \delta \sin \delta_c + \cos \delta \cos \delta_c \cos \Delta \alpha$
- $\cos \gamma = (\sin \delta \cos \delta_c \cos \delta \sin \delta_c \cos \Delta \alpha) / \sin \sigma$
 - $s = f \tan \sigma$

$$x = x_c - s\sin(\gamma - \beta)$$

$$y = y_c - s \cos(\gamma - \beta)$$

Summary

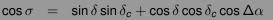
Astrometry: from Sky to CCD/Film

Conversion: star coordinates $(\alpha, \delta) \rightarrow$ pixel coordinates (x, y)

- $\cos \sigma = \sin \delta \sin \delta_{c} + \cos \delta \cos \delta_{c} \cos \Delta \alpha$
- $\cos \gamma = (\sin \delta \cos \delta_c \cos \delta \sin \delta_c \cos \Delta \alpha) / \sin \sigma$
 - $s = f \tan \sigma$

$$x = x_c - s \sin(\gamma - \beta)$$

$$\gamma = y_c - s \cos(\gamma - \beta)$$


Unknown parameters

Summary

Astrometry: from Sky to CCD/Film

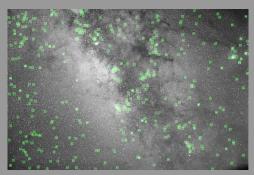
Conversion: star coordinates $(\alpha, \delta) \rightarrow$ pixel coordinates (x, y)

- $\cos \gamma = (\sin \delta \cos \delta_c \cos \delta \sin \delta_c \cos \Delta \alpha) / \sin \sigma$
 - $s = f \tan \sigma$

$$x = x_c - s \sin(\gamma - \beta)$$

$$y = y_c - s\cos(\gamma - \beta)$$

Unknown parameters e.g. focal length *f* (0.03 % accuracy!)


Summary

- Automatic star detection: Source Extractor E. Bertin, http://terapix.iap.fr/soft/sextractor/
- Extract reference stars from Hubble Guide Star Catalog
- Star matching: automatic pattern recognition M. Richmond, http://spiff.rit.edu/match/
- With reference stars: optimize projection parameters via a *least squares fit*

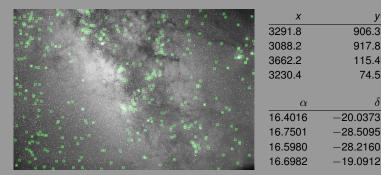
Summary

- Automatic star detection: Source Extractor
 E. Bertin, http://terapix.iap.fr/soft/sextractor/
- Extract reference stars from Hubble Guide Star Catalog
- Star matching: automatic pattern recognition M. Richmond, http://spiff.rit.edu/match/
- With reference stars: optimize projection parameters via a *least squares fit*

X	У
3291.8	906.3
3088.2	917.8
3662.2	115.4
3230.4	74.5

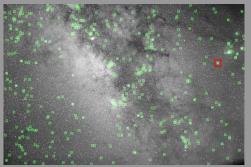
From Stars to Pixels

906.3


917.8

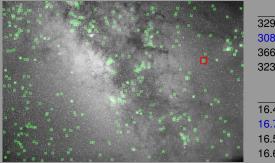
115.4

74.5

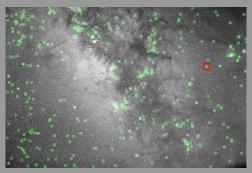

δ

- Automatic star detection: Source Extractor E. Bertin, http://terapix.iap.fr/soft/sextractor/
- Extract reference stars from Hubble Guide Star Catalog

Automatic Selection of Reference Stars


- Automatic star detection: Source Extractor
 E. Bertin, http://terapix.iap.fr/soft/sextractor/
- Extract reference stars from Hubble Guide Star Catalog
- Star matching: automatic pattern recognition
 M. Richmond, http://spiff.rit.edu/match/
- With reference stars: optimize projection parameters via a *least squares fit*

х	У	
3291.8	906.3	
3088.2	917.8	
3662.2	115.4	
3230.4	74.5	
α	δ	
16.4016	-20.0373	
16.7501	-28.5095	
16.5980	-28.2160	
16.6982	-19.0912	


26/45

- Automatic star detection: Source Extractor
 E. Bertin, http://terapix.iap.fr/soft/sextractor/
- Extract reference stars from Hubble Guide Star Catalog
- Star matching: automatic pattern recognition
 M. Richmond, http://spiff.rit.edu/match/
- With reference stars: optimize projection parameters via a *least squares fit*

Х	У	
3291.8	906.3	_
3088.2	917.8	
3662.2	115.4	
3230.4	74.5	
α	δ	
16.4016	-20.0373	
16.7501	-28.5095	
16.5980	-28.2160	
16.6982	-19.0912	

- Automatic star detection: Source Extractor
 E. Bertin, http://terapix.iap.fr/soft/sextractor/
- Extract reference stars from Hubble Guide Star Catalog
- Star matching: automatic pattern recognition
 M. Richmond, http://spiff.rit.edu/match/
- With reference stars: optimize projection parameters via a *least squares fit*

	X	У	
	3291.8	906.3	
	3088.2	917.8	
;	3662.2	115.4	
÷	3230.4	74.5	
	α	δ	
	16.4016	-20.0373	
	16.7501	-28.5095	
	16.5980	-28.2160	
	16.6982	-19.0912	

Summary

Add projection parameters to FITS file

Flexible Image Tra	nsport S ystem: standard image format in astronomy
CTYPE1 = 'RAT. CUNIT1 = 'deg	AN', / right ascension - gnomonic projection
CRPIX1 = CRVAL1 = CDELT1 = CROTA1 =	<pre>659.2192 / reference point RA (pixel coordinate) 138.5691 / right ascension (in deg.) at ref. point -0.007175109 / degrees per pixel 12.66713</pre>
RADESYS = 'FK5 EQUINOX =	, 2000.

- World Coordinate System (WCS): Conversion from "pixel" to "world" coordinates (e. g. RA/Dec)
 E. W. Greisen, M. R. Calabretta, Astron. & Astrophys. 395, 1061 (2002)
- Can be processed by WCS-aware software

Summary

Add projection parameters to FITS file

Flexible Image Transport Syste	em: standard image format in astronomy
CTYPE1 = 'RATAN' CUNIT1 = 'deg '	/ right ascension - gnomonic projection
CRVAL1 = 138.569	92 / reference point RA (pixel coordinate) 91 / right ascension (in deg.) at ref. point 99 / degrees per pixel 13
RADESYS = 'FK5 ' EQUINOX = 2000).

- World Coordinate System (WCS): Conversion from "pixel" to "world" coordinates (e. g. RA/Dec)
 E. W. Greisen, M. R. Calabretta, Astron. & Astrophys. 395, 1061 (2002)
- Can be processed by WCS-aware software

Summary

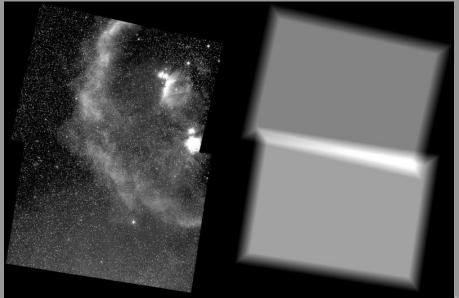
Finally: Distortion Correction

- Combine/transform FITS images: SWarp
 - E. Bertin, http://terapix.iap.fr


 Summary

Finally: Distortion Correction

Summary


Finally: Distortion Correction

ৰ □ ► ৩৭৫ 30/45

Summary

Smooth Transitions via (Weight Masks

Introduction: History of Astrophotography

Summary

The All-Sky Panorama

May 1998

ৰ □ ► ৩৭৫ 32/45

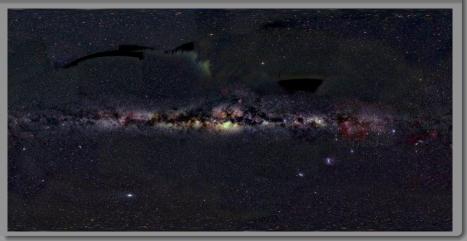
Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milky Way

Summary

The All-Sky Panorama

February 1999



◄□▶ ♥९< 32/45</p>

From Stars to Pixels

The All-Sky Panorama

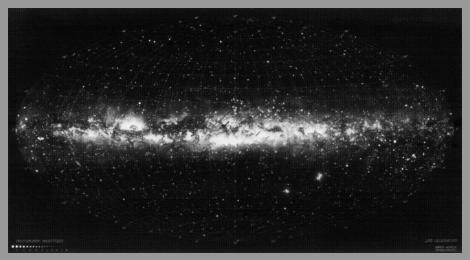
October 1999

Introduction: History of Astrophotography

From Stars to Pixels Highlights of the Milky Wa

Summary

The All-Sky Panorama


May 2000: Ready!

Summary

All-Sky Panoramas

1950s: All-sky panorama at Lund Observatory, Sweden

Summary

All-Sky Panoramas

Color panorama in Aitoff projection

Summary

Highlights of the Milky Way

Stars: Only up to a distance of 6000 light years! (Diameter of our galaxy: more than 100,000 light years)

Dust: Limits our view at optical wavelengths! Seeing through dust is possible:

- o radio telescopes
- o infra-red
- X-rays

Nebulae: Mostly hydrogen

- H_{α} : 656 nm = red
- H_{β} : 486 nm = blue
- [O III]: "forbidden" lines near 500 nm = blue-green

ৰ □ ► ৩৭৫ 34/45

Summary

Highlights of the Milky Way

Stars: Only up to a distance of 6000 light years! (Diameter of our galaxy: more than 100,000 light years)

Dust: Limits our view at optical wavelengths!

Seeing through dust is possible:

- radio telescopes
- o infra-red
- X-rays

Nebulae: Mostly hydrogen

- H_{α} : 656 nm = red
- H_{β} : 486 nm = blue
- [O III]: "forbidden" lines near 500 nm = blue-green

Highlights of the Milky Way

Highlights of the Milky Way

- Stars: Only up to a distance of 6000 light years! (Diameter of our galaxy: more than 100,000 light years)
- Dust: Limits our view at optical wavelengths! Seeing through dust is possible:
 - radio telescopes

Highlights of the Milky Way

Highlights of the Milky Way

- Stars: Only up to a distance of 6000 light years! (Diameter of our galaxy: more than 100,000 light years)
- Dust: Limits our view at optical wavelengths! Seeing through dust is possible:
 - radio telescopes
 - infra-red

Sumn

Highlights of the Milky Way

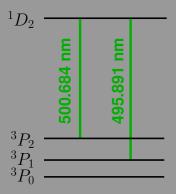
- Stars: Only up to a distance of 6000 light years! (Diameter of our galaxy: more than 100,000 light years)
- Dust: Limits our view at optical wavelengths! Seeing through dust is possible:
 - radio telescopes
 - o infra-red
 - X-rays

Nebulae: Mostly hydrogen

- H_{α} : 656 nm = red
- H_{β} : 486 nm = blue
- [O III]: "forbidden" lines near 500 nm = blue-green

Summary

Highlights of the Milky Way


- Stars: Only up to a distance of 6000 light years! (Diameter of our galaxy: more than 100,000 light years)
- Dust: Limits our view at optical wavelengths! Seeing through dust is possible:
 - radio telescopes
 - o infra-red
 - X-rays
- Nebulae: Mostly hydrogen
 - H_{α} : 656 nm = red
 - H_{β} : 486 nm = blue
 - [O III]: "forbidden" lines near 500 nm = blue-green

"Forbidden" Lines

- metastable excited atomic states
- o lifetime: seconds ... minutes
- under lab conditions: de-excitation mostly via collisions
- O III (= O²⁺): lines initially interpreted as new element "nebulium"
- Positive identification: I. Bowen, 1928

"Forbidden" Lines

- metastable excited atomic states
- lifetime: seconds ... minutes
- under lab conditions:
 de-excitation mostly via collisions
- O III (= O²⁺): lines initially interpreted as new element "nebulium"
- Positive identification: I. Bowen, 1928

Summary

"Forbidden" Lines

- metastable excited atomic states
- lifetime: seconds ... minutes
- under lab conditions:
 de-excitation mostly via collisions
- O III (= O²⁺): lines initially interpreted as new element "nebulium"
- Positive identification: I. Bowen, 1928

THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

IANUARY 1928

VOLUME LXVII

NUMBER 1

THE ORIGIN OF THE NEBULAR LINES AND THE STRUCTURE OF THE PLANETARY NEBULAE

By I. S. BOWEN

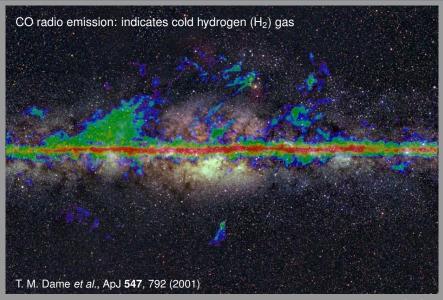
ABSTRACT

Identification of nebular lines.—Eight of the strongest nebular lines are classified as due to electron jumps from metastable states in N_{01} , O_{01} and O_{02} . Several of the weaker lines are identified with recently discovered lines in the spectrum of highly ionized oxygen and nitrogen.

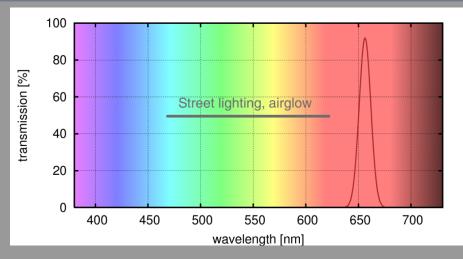
Behavior of lines in nobulae.—The lines thus identified are shown to behave in various nebulae in a way consistent with the foregoing classifications. A similar study of the few lines yet unknown makes it possible to estimate the stage of ionization from which they arise.

Structure of the planetary nebulae.—On the basis of the foregoing identifications, the relative sizes and intensities of the monochromatic images of the planetary nebulae are explained by an extension and modification of the ideas developed by Zanstra for hydrogen in the diffuse nebulae.

Highlights of the Milky Way


Dust and Gas in the Milky Way

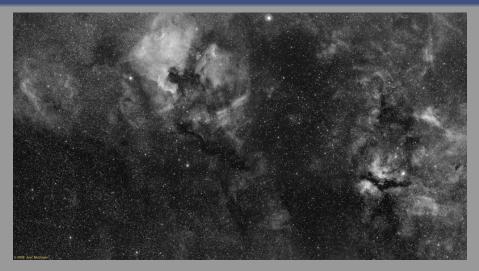
From Stars to Pixels Highlights of the Milky Way


Summary

Dust and Gas in the Milky Way

Summary

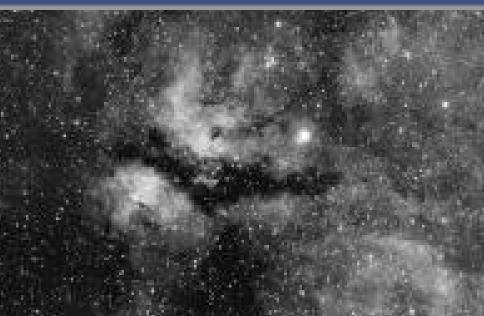
Narrow-band H_{α} Filter


- Recombination of ionized hydrogen gas \rightarrow H_{α} (656.3 nm)
- Narrow-band filter blocks light pollution and airglow

Northern Cygnus in H_{α} light

Emission nebulae: hydrogen gas, ionized by UV light of young, hot stars

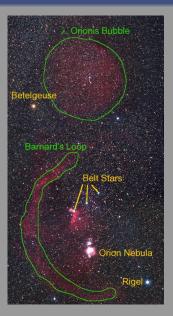
The North America Nebula (NGC 7000)



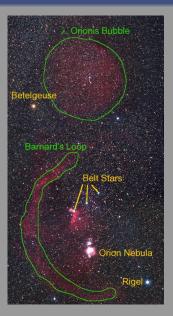
Emission nebulae: hydrogen gas, ionized by UV light of young, hot stars

The North America Nebula (NGC 7000)

Gamma Cygni Nebula (IC 1318)



- Barnard's loop: discovered in 1895 on long
 exposure photographs with a portrait camera
- Distance: approx. 1600 light years diameter 300 light years
- Possibly the remnant of a Supernova explosion 2 million years ago (expansion speed approx. 20 km/s)


- Barnard's loop: discovered in 1895 on long
 exposure photographs with a portrait camera
- Distance: approx. 1600 light years diameter 300 light years
- Possibly the remnant of a Supernova
 explosion 2 million years ago
 (expansion speed approx. 20 km/s)

Summary

- Barnard's loop: discovered in 1895 on long exposure photographs with a portrait camera
- Distance: approx. 1600 light years diameter 300 light years
- Possibly the remnant of a Supernova
 explosion 2 million years ago
 (expansion speed approx. 20 km/s)

Summary

- Barnard's loop: discovered in 1895 on long exposure photographs with a portrait camera
- Distance: approx. 1600 light years diameter 300 light years
- Possibly the remnant of a Supernova explosion 2 million years ago (expansion speed approx. 20 km/s)

From Stars to Pixels Highlights of the Milky Way

Summar

Orion/Barnard's Loop: Gemini 11 UV image

FIG. 1.—Objective-prism photograph of the constellation Orion made during E.V.A. by astronauts Charles Conrad and Richard Gordon from the Gemini 11 space vehicle. Astronomical north is at the top

- UV spectrogram taken by astronaut Richard Gordon during EVA in 1966
- UV-"Bubble" extends much further than visible structure

C. R. O'Dell, Donald G. York and Karl G. Henize, ApJ **150**, 835 (1967)

From Stars to Pixels Highlights of the Milky Way

Summary

Orion/Barnard's Loop: H_{α} image (8 frame mosaic)

• Narrow-band H_{α} image at 656 nm

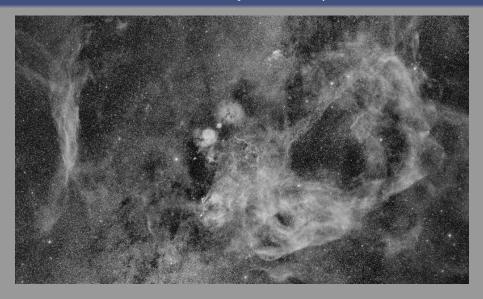
ৰ □ ► ৩৭৫ 38/45

Orion/Barnard's Loop: H_{α} RGB image

• Red and luminance channel in film image replaced by H_{α} data

Orion/Barnard's Loop: H_{α} RGB image

"Witch Head" Nebula (IC 2118)



- Reflected light from Rigel (Orion)
- Rayleigh scattering \rightarrow blue!

From Stars to Pixels Highlights of the Milky Way

Summary

The Gum Nebula: a 1-million-year-old supernova remnant

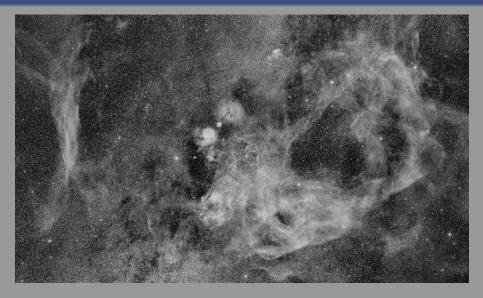
ৰ □ ► ৩৭৫ 41/45

From Stars to Pixels Highlights of the Milky Way

Summary

Color imaging with two cameras

Astro CCD camera: H_{α}


- monochrome
- chip size: $9.0 \times 6.8 \text{ mm}^2$

Consumer DSLR camera: RGB

- color
- chip size: $22.2 \times 14.8 \text{ mm}^2$

The Gum Nebula: H_{α} image

Summary

The Gum Nebula: **RGB** image

< □ ► ৩৭৫ 41/45

From Stars to Pixels Highlights of the Milky Way

Summary

The Gum Nebula: "semi-false" color image

ৰ্⊔ > ৩৭৫ 41/45

From Stars to Pixels Highlights of the Milky Way

Summary

The Gum Nebula: "semi-false" color image

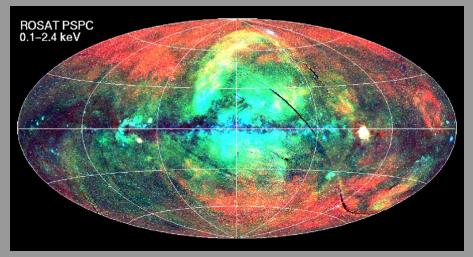
ৰ্⊔ > ৩৭৫ 41/45

From Stars to Pixels Highlights of the Milky Way

Summary

The Vela Supernova Remnant (\approx 11,000 years old)

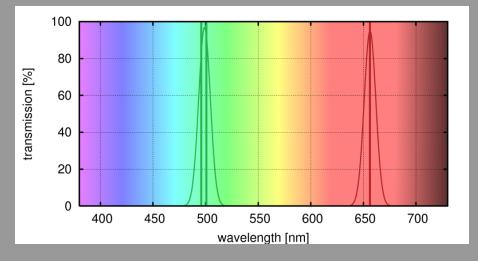
Optical All-Sky



ৰ □ ► ৩৭৫ 41/45

From Stars to Pixels Highlights of the Milky Way

Summa


X-ray All-Sky (ROSAT Survey)

Vela SNR is the brightest X-ray source in the sky!

Summary

Another Emission Line: Doubly Ionized Oxygen [O III]

The Vela Supernova Remnant in H_{α}

Summary

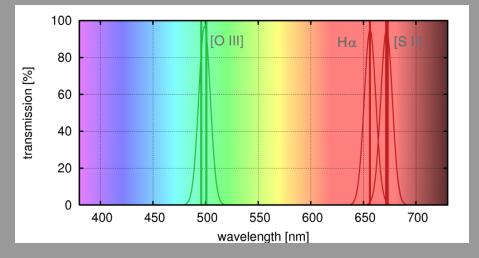
The Vela Supernova Remnant in O-III

The Vela Supernova Remnant: Two-color image

The Vela Supernova Remnant: Two-color image

Summary

The Pencil Nebula: A Supernova Shockwave



The Pencil Nebula (Hubble Space Telescope)

Summary

Tri-Color Narrowband images: [SII], H_{α} , [OIII]

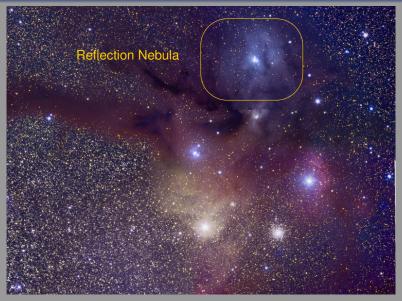
<□> ∽९२° 43/45

The Eta Carinae Nebula: $[SII] = red, H_{\alpha} = green, [OIII] = blue$

From Stars to Pixels Highlights of the Milky Way

Summar

The Eta Carinae Nebula: $H_{\alpha} = red$, [O III] = green, [S II] = blue


43/45

From Stars to Pixels Highlights of the Milky Way

Summary

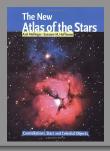
Reddening due to Interstellar Dust

Summary

- Tremendous progress in astrophotography over the past 150 years
- With some processing, the sky is colorful!

Summary

- Tremendous progress in astrophotography over the past 150 years
- With some processing, the sky is colorful!



Summary

- Tremendous progress in astrophotography over the past 150 years
- With some processing, the sky is colorful!

Further information

- Web site: http://home.arcor-online.de/axel.mellinger/
- Photographic Star Atlas:

A. Mellinger, S. Hoffmann: The New Atlas of the Stars *Firefly Books Ltd.*